The Effect of Image Enhancement on the Statistical Analysis of Functional Neuroimages: Wavelet-Based Denoising and Gaussian Smoothing
نویسنده
چکیده
The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising schemes are extensions of WaveLab routines, using the symmetric orthogonal cubic spline wavelet basis. In a first study, activity in a time series is simulated by superimposing a timedependent signal on a selected region. We add noise with a known signal-to-noise ratio (SNR) and spatial correlation. After denoising, the statistical analysis, performed with SPM, is evaluated. We compare the shapes of activations detected after applying the wavelet-based methods with the shapes of activations detected after Gaussian smoothing. In a second study, the denoising schemes are applied to a real functional MRI time series, where signal and noise cannot be separated. The denoised time series are analysed with SPM, while false discovery rate (FDR) control is used to correct for multiple testing. Wavelet-based denoising, combined with FDR control, yields reliable activation maps. While Gaussian smoothing and wavelet-based methods producing smooth images work well with very low SNRs, less smoothing wavelet-based methods produce better results for time series of moderate quality.
منابع مشابه
Enhancing Functional Neuroimages: Wavelet Denoising as an Alternative to Gaussian Smoothing
We present a general wavelet-based denoising scheme for functional neuroimages and compare it to Gaussian smoothing, the standard method in functional neuroimaging. We adapted WaveLab thresholding routines to 2D data, and tested their effect on the signal-to-noise ratio of noisy images. In a simulated time series test, we also investigated the shapes of detected activations after denoising. key...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملImage Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...
متن کامل